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Abstract. We study the algorithmic complexity of fair division problems
with a focus on minimizing the number of queries needed to find an approx-
imate solution with desired precision. In a recent joint work with Alexandr
Grebennikov, Xenia Isaeva, Mikhail Mikhailov, and Oleg Musin, we showed
for several classes of fair division problems that under certain natural condi-
tions on sets of preferences, a polylogarithmic number of queries with respect
to the reciprocal of accuracy is sufficient. The present note extends these re-
sults (on the sufficiency of polylogarithmic number of queries) to the case of
four or more tenants in the rental harmony problem with convex preference
sets.

We study algorithmic aspects of the so-called fair division problems. A nice
introduction to the subject is given in the book [RW98]. In this note, we discuss
the following specific algorithmic geometry problem, the relation of which to the
rental harmony problem (this is a type of fair division problems) is explained, e. g.,
in a recent paper [GIMMM].

1. Stating an algorithmic problem
Let k ≥ 2 be a positive integer, let ∆k be a (k − 1)-dimensional regular simplex
with edges of length 1 in Rk−1, and let v1, . . . , vk be the vertices of ∆k. For
j ∈ {1, . . . , k}, we denote the facet Conv ({vi}i 6=j) of ∆k, where Conv (X) stands
for the convex hull of X, by Fj . (For the rental harmony problem, ∆k corresponds
to all representations of total price as a sum of k nonnegative numbers; and Fj is
precisely the set of price distributions with zero price for the jth room.)

Assume that a collection of k subsets P1, . . . , Pk of ∆k is fixed such that
(P1) {P1, . . . , Pk} is a covering of ∆k, that is,

⋃
i∈{1,...,k} Pi = ∆k;

(P2) Pi contains Fi for each i ∈ {1, . . . , k};
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(P3) Pi is convex for each i ∈ {1, . . . , k};
(P4) Pi is closed for each i ∈ {1, . . . , k}.1

Assume that we have no description of the sets P1, . . . , Pk, but we know that
the sets have the listed properties and we can perform queries about these sets: if
we choose an index i ∈ {1, . . . , k} and a point x ∈ ∆k, we receive ‘yes’ if x ∈ Pi
and ‘no’ otherwise.

The Knaster–Kuratowski–Mazurkiewicz (KKM) lemma guarantees (due to
the properties (P1), (P2), and (P4)) that the intersection

⋂
i∈{1,...,k} Pi is nonempty,

so that there exists a point x in ∆k such that dist(x, Pi) = 0 for all i ∈ {1, . . . , k}.
We say that such x in ∆k is a solution for P = {P1, . . . , Pk}. We say that x in ∆k

is an ε-solution, ε ≥ 0, for P if dist(x, Pi) ≤ ε for all i ∈ {1, . . . , k}.2
Our goal is to construct an algorithmic procedure that, given a collection

{P1, . . . , Pk} (having properties (P1)–(P4)) and an ‘accuracy constant’ ε > 0 finds
an ε-solution using the smallest possible number of queries.

2. The main result
It is known that ε-nets allow us to find ε-solutions with O(1/ε)k−1 queries. In the
case k = 2, we can use binary search to find an ε-solution in the interval ∆2 with
O(log(1/ε)) queries. Theorem 5.2 in [GIMMM] implies that in the case k = 3,
an ε-solution can be found with O(log(1/ε))2 queries. A natural conjecture arises
that an ε-solution can be found with O(log(1/ε))k−1 queries. The main result of
the present note confirms this conjecture for k = 4.

Theorem 1. In the case k = 4, an ε-solution for convex Pi can be found with
O(log(1/ε))3 queries.

Theorem 1 implies (modulo results of [GIMMM] and using terminology in-
troduced there) that, for the rental harmony problem with 4 tenants having con-
vex preference sets, we can find an ε-fair division point in binary mode with
O(log(1/ε))3 queries.

3. Basic idea of the algorithm
The description of our algorithm is rather cumbersome, and before proceeding to
it, we will outline its core idea. This idea seems to work for an arbitrary dimension,
but here we restrict ourselves to the case of k = 4. Let us fix one of the facets F1,
F2, F3, F4 (say, F4) and study the sections of our ∆4 with hyperplanes parallel
to F4. These sections form a bundle (Tθ)θ∈[0,1] of regular triangles, where θ is the
diameter of Tθ; we have T0 = v4 and T1 = F4. The first key observation we need

1In fact, we can carry out our constructions without condition (P4), but we introduce it for
convenience, in order not to repeatedly mention the transition to closures in what follows.
2We remark that an ε-solution is not necessarily located close to a solution. It is easy to construct
an example when the distance between an ε-solution and the solution closest to it exceeds 100ε.



Fair division algorithms 3

is that if P1, P2, P3 do not cover Tθ for some θ (so that Tθ \ (P1 ∪ P2 ∪ P3) is
nonempty) then Tθ contains a unique ‘inscribed circle’ Sθ that touches each of
P1, P2, and P3 and has no points of P1 ∪ P2 ∪ P3 inside. The center of Sθ is an
rθ-solution, where rθ is the radius of Sθ. Thus, if given an ε > 0 we find some
θ ∈ [0, 1] such that Tθ \ (P1 ∪ P2 ∪ P3) is nonempty and rθ ≤ ε, then the center
of Sθ will be the desired ε-solution. Observe that, due to convexity arguments,
if the set I of those θ for which P1, P2, P3 do not cover Tθ is nonempty, then
this I is a half-open subinterval in [0, 1] of the form (θ′, 1], and the radii rθ form
a continuous monotone function on this subinterval I . Using this, we can try to
find θ with a small radius rθ ≤ ε via binary search. Take θ1 = 1/2. If 1/2 is not
in I , then put θ2 = 3/4, and if 1/2 is in I and r1/2 > ε, then put θ2 = 1/4, and
so on. For example, if the set I is empty or of length less than ε, then at the step
m = log2d1/εe we get θm = 1− 1/2m ≥ 1− ε and any point in the nonempty (by
the KKM lemma) set Tθm ∩P1 ∩P2 ∩P3 is an ε-solution (because F4 ⊂ P4 is close
enough).

A difficulty arising when implementing the described idea as an algorithmic
procedure is that a monotone function can have ‘jumps’. This issue is resolvable
due to the fact that the function rθ is convex in addition. Another difficulty is the
calculation of inscribed circles.

3.1. Inscribed antitriangles
In order to simplify computations, instead of finding (approximately) inscribed
circles Sθ for triangles Tθ, we introduce and calculate (approximately) inscribed
antitriangles. By an antitriangle in a triangle Tθ (in the above notation) we mean
any regular triangle contained in Tθ that is related to Tθ by a negative homothetic
transformation. An antitriangle A in Tθ is inscribed if the intersection of A with the
union P1∪P2∪P3 is the set of vertices of A. It can be shown that if Tθ\(P1∪P2∪P3)
is nonempty then there exists a unique inscribed antitriangle Aθ for Tθ. Observe
that if Tθ\(P1∪P2∪P3) is nonempty, then the center of the inscribed antitriangleAθ
is a (Diam (Aθ) /

√
3)-solution, where Diam (Aθ) is the diameter of Aθ, while any

point in Aθ is a Diam (Aθ)-solution. Similar to the approach with inscribed circles,
the diameters Diam (Aθ) form a continuous monotone convex function on I . Using
this, we can try to find θ with a small Diam (Aθ) via binary search.

4. Procedure for finding inscribed antitriangles (PFIA)
Now we describe a computational procedure that, given an arbitrary θ ∈ (0, 1],
operates in the triangle Tθ and calculates, with a prescribed precision, the size of
the inscribed antitriangle Aθ and its position (if it is large enough). The input of
the procedure is the ‘coordinate’ θ and a ‘precision constant’ δ > 0. The outputs
of the procedure are:
• A (nonnegative real) number dθ such that |dθ − Diam (Aθ) | ≤ δ (if Aθ is

undefined, we formally set Diam (Aθ) = 0 so that dθ ≤ δ in this case).
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• A point xθ in Tθ such that the metric ball Bdθ+δ(xθ) of radius dθ+δ centered
at xθ intersects P1, P2, and P3. Besides, Bdθ+δ(xθ) intersects P4 whenever
Diam (Aθ) > δ.

In this procedure, we fix one of the facets F1, F2, F3 (say, F3) and regard Tθ
as a bundle of closed segments parallel to the edge Tθ∩F3. For this bundle, we use
the notation (Iα)α∈[0,θ], where Iα is the segment of length α (so that Iθ = Tθ ∩F3

and I0 is the opposite vertex of Tθ). For each α ∈ [0, θ], the segment Iα is isometric
to the segment [0, α]. In the following description, when α is fixed we identify Iα
with [0, α] via the isometry sending the endpoint Iα ∩ F1 to {0} in [0, α].

If Tθ \ (P1 ∪ P2 ∪ P3) is nonempty and the inscribed antitriangle Aθ exists,
then there is a unique η ∈ (0, θ) such that Iη contains an edge of Aθ. In this case
we use the notation E(θ) = η. If Tθ \ (P1 ∪ P2 ∪ P3) is empty, we set E(θ) = θ.
The procedure uses several levels of binary searches, the upper level goes through
the interval [0, θ] and study segments Iα of (Iα)α∈[0,θ], which can be regarded as
aiming to ‘find’ (approximately) the segment IE(θ).

We set a1 = 0 and b1 = θ and start an iterative process with intervals [ai, bi]
in [0, θ] such that [ai, bi] contains E(θ) if Diam (Aθ) is large enough. Given ai
and bi such that 0 ≤ ai < bi ≤ θ, the ith iteration looks as follows. We set
ci := (ai + bi)/2 and operate in the segment Ici (which is parametrized as [0, ci]
by the above convention). In m := dlog2(9ci/δ)e ≤ dlog2(1/δ)e+ 4 queries we can
find in Ici = [0, ci] a half-open subinterval of the form [pδ′, pδ′ + δ′), where p is an
integer and δ′ = ci/2

m ≤ δ/9, such that

[0, pδ′] ⊂ (Ici ∩ P1) ⊂ [0, pδ′ + δ′).

Another m queries allow us to find q ∈ Z such that (qδ′, qδ′ + δ′] contains the
endpoint g of Ici ∩ P2 such that [g, ci] = Ici ∩ P2. We have three cases:

q < p, which means that P1 ∪ P2 contains Ici and ci < E(θ). In this case, we set
[ai+1, bi+1] := [ci, bi] and pass to the next iteration.

q = p, which means that either P1 ∪ P2 contains Ici or the interval Ici \ (P1 ∪ P2)
has length at most δ. In the case q = p, we also set [ai+1, bi+1] := [ci, bi]
for the next iteration, even though it is possible that E(θ) = ci. In fact, if
q = p, then E(θ) can take any position in (0, ci), but we see that if q = p and
E(θ) ≤ ci, then the diameter of Aθ is at most δ, which is less than our ‘level
of visibility’ limit.

q > p, in this case we see that the length of Ici \(P1∪P2) is greater than (q−p−1)δ′

and lesser than (q−p+1)δ′. In the case q > p, we do additional computations.

Additional computations for the case q > p are as follows. If the subsegment
[pδ′, qδ′ + δ′] of Ici is an edge of an antitriangle contained in Tθ, we denote the
opposite vertex of this antitriangle by w. If the subsegment [pδ′ + δ′, qδ′] of Ici is
an edge of an antitriangle contained in Tθ, we denote the opposite vertex of this
antitriangle by v. If any of v and w is defined, we perform a query whether P3

contains it. Then, for the case q > p, we introduce three subcases:
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(L) either v is not defined or v ∈ P3. In this case, we have E(θ) < ci, and we set
[ai+1, bi+1] := [ai, ci] (and pass to the next iteration).

(R) w is defined and w 6∈ P3. In this case, E(θ) > ci. We set [ai+1, bi+1] := [ci, bi].
(+) v is defined and v 6∈ P3 while w is either not defined or w ∈ P3. In this

case, we have |Diam (Aθ) − (q − p)δ′| ≤ δ′, and we stop our procedure with
setting dθ = (q − p)δ′ and xθ to be the center of the antitriangle with edge
[(p+ 1)δ′, qδ′] (or just set xθ to be any point of this edge).

This completes the description of the iterative step.
We continue the iterative process either until subcase (+) happens or stop

at step 2dlog2(1/δ)e+ 10. If subcase (+) happens, the output of the procedure is
described above. If we stop at the step t = 2dlog2(1/δ)e+ 10 with no (+) subcase,
the situation splits in two following subcases.
• The subcase with at > θ − δ/2. It can be shown that the only way to get
at > θ − δ/2 is to have ‘short’ interval Iθ−δ \ (P1 ∪ P2) of length less than
δ + 2δ/9. In this case we have Diam (Aθ) < 2δ and we can set dθ = δ. The
point xθ can be chosen in Iθ−δ in an obvious way.

• If at ≤ θ − δ/2, we study the segment Iat . Clearly, 2dlog2(1/δ)e+ 10 queries
is enough to find h such that

|h−Diam (Iat \ (P1 ∪ P2)) | < δ/9

and x ∈ Iat such that x (δ/9)-approximates the center of that of the two
intervals Iat \ (P1 ∪ P2) and Iat ∩ P1 ∩ P2 which is nonempty. Then we set
dθ := h+ δ/2 and xθ := x and quit the procedure.3

5. Description of the algorithm (of finding an ε-solution)
Now we turn to the description of our algorithm that, given an ‘accuracy con-
stant’ ε and a collection P = {P1, P2, P3, P4} of subsets with properties (P1)–(P4)
in ∆4, following the basic idea described above, and using the procedure described
above (PFIA), finds an ε-solution for this P.

Algorithm starts with applying PFIA to the triangle T1−ε (see notation in
Sec. 3). Let the input accuracy constant δ for PFIA be ε/9.

If PFIA says that d1−ε ≤ ε− δ, which means that the set T1−ε \ (P1 ∪ P2 ∪
P3) is either empty or ‘thin enough’, then the point x1−ε (this point is in the
output of PFIA; see the description of PFIA) is an ε-solution because the metric
ball Bε(x1−ε) of radius ε centered at x1−ε intersects P4 (which contains F4) and
P1, P2, and P3 as well (because Bd1−ε+δ(x1−ε) by construction of PFIA intersects

3In order to prove that the assigned values of dθ and xθ indeed have the properties declared
for the output, we check several various cases and use properties of convex sets. One of the
key points of our proof is the fact that corresponding endpoints of the intervals Iat \ (P1 ∪ P2)
and Ibt \ (P1 ∪ P2) are located at a small distance from each other. This fact follows from the
conditions at ≤ θ − δ/2 and bt − at ≤ δ2/100 and can be proved by analogy with the simple
observation given in Sec. 5.2.
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P1, P2, and P3 while d1−ε + δ ≤ ε− δ+ δ = ε so that Bd1−ε+δ(x1−ε) ⊂ Bε(x1−ε)).
Then the algorithm stops.

Otherwise, if d1−ε > ε− δ, the algorithm goes into an iterative process with
intervals [ai, bi] in [0, 1] such that dai ≤ δ and dbi > ε− δ (in the present settings
we have ε − δ = 8ε/9). Having d1−ε > ε − δ, we set [a1, b1] = [2δ, 1 − ε]. Each
subsequent iteration, being given [ai, bi] with dai ≤ δ and dbi > ε − δ, we set
ci = (ai + bi)/2 and apply PFIA to the triangle Tci obtaining dci and xci as its
output.
• If dci ≤ δ, we move on to the next iteration with [ai+1, bi+1] := [ci, bi].
• If dci > ε− δ, we move on to the next iteration with [ai+1, bi+1] := [ai, ci].
• If dci ∈ (δ, ε − δ], then Diam (Aci) ∈ (0, ε] (because |dθ − Diam (Aθ) | ≤ δ)

and xci is an ε-solution for P (by construction of PFIA).

5.1. Estimating the number of queries
Observe that Diam (At), t ∈ [0, 1], is a convex nonnegative function. In particular,
for any a and b in [0, 1] such that 0 ≤ a < b ≤ 1, we have (cf. Sec. 5.2)

Diam (Ab)−Diam (Aa)

b− a
≤ Diam (A1)−Diam (Aa)

1− a
.

Suppose that the upper level iterative process in our algorithm arrives at step i.
Since Diam (A1) ≤ 1/2, ai < bi ≤ 1− ε, |dθ −Diam (Aθ) | ≤ δ, and Diam (Aai) ≤
dai + δ ≤ 2δ in our case, it follows that

dbi ≤
bi − ai

2ε
+ 3δ.

Since ε− δ < dbi and δ = ε/9, this implies that

ε2 < bi − ai.
Since bi−ai ≤ 21−i, it follows that a necessary conditions for the transition to the
ith iteration is the validity of the inequality

i < log2(2/ε2) = 1 + 2 log2(1/ε).

Therefore, since we refer to PFIA before iterations only once, our algorithm arrives
at an ε-solution by calling procedure PFIA at most 1 + 2 log2(1/ε) times. Each
iteration of PFIA requires at most (2dlog2(1/ε)e+10)2 queries, so the total search
takes at most (2dlog2(1/ε)e+ 10)3 ones.

5.2. An observation concerning convex/concave functions
Let f : [0, 1]→ R be a nonnegative concave function with domain [0, 1], and let a
and b be numbers in [0, 1] such that 0 ≤ a < b ≤ 1. Then

f(b)− f(a)

b− a
≤ f(b)

b
and

f(a)− f(b)

b− a
≤ f(a)

1− a
.

In particular, if f(a) and f(b) are in [0, 1] and for some δ > 0 we have δ ≤ a < b ≤
1− δ and b− a ≤ δ2, then

|f(b)− f(a)| ≤ δ.
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